TRABAJO PRÁCTICO Nº 0
TEMA: EXPRESIONES ALGEBRAICAS Y POLINOMIOS

1.- Realizar las siguientes operaciones y simplificar

a) \((8r^2 - 6s^2) + (4s^2 - 2r^2 + 6)\)
b) \((\sqrt{x} + \sqrt{2y}) + (\sqrt{x} + \sqrt{3z})\)

c) \((6x^2 - 10xy + \sqrt{2}) - (2z - xy + 4)\)
d) \((\sqrt{x} + \sqrt{2y}) - (\sqrt{x} - \sqrt{3z})\)

e) \(3(x^2 + y^2) - x(y + 2x) + 2y(x + 3y)\)
f) \((2s - 1)(2s + 1)\)

g) \((x^2 - 1)(2x^2 + 2x - 3)\)
h) \((x - 5)^2\)

i) \((x + 5)^3\)
j) \((2x - 3)^3\)

k) \((6x^3 + 4x^3 - 1) ÷ 2x^2\)
l) \((x^2 + 3x - 1) ÷ (x + 3)\)

m) \((3x^3 - 2x^2 + x - 3) ÷ (x + 2)\)
n) \(t^2 + (t - 8)\)

2.- Factorizar completamente las siguientes expresiones

a) \(8a^3bc - 12ab^3cd + 4b^4c^2d^2\)
b) \(x^2 - 25\)

c) \(16x^2 - 9\)
d) \(z^2 + 6z + 8\)

e) \(x^2 + 6x + 9\)
f) \(2x^2 + 12x + 16\)

g) \(3x^2 - 3\)
h) \(12s^3 + 10s^2 - 8s\)

i) \(x^{2/3}y - 4x^{5/3}y^3\)
j) \(2x^3 + 2x^2 - 12x\)

k) \((x^3 - 4x) ÷ (8 - 2x^2)\)
l) \(81x^4 - y^4\)

m) \(x^3 + 8\)
n) \(x^6 - 1\)

ñ) \((x + 3)^2(x - 1) + (x + 3)^2(x - 1)^2\)
o) \(p(1 + r) + p(1 + r)r\)

p) \(x^4 - 16\)
q) \(x^4 + x^2 - 2\)

r) \(x^5 - 2x^3 + x\)
s) \(4x^3 - 6x^2 - 4x\)

3.- Realizar las operaciones necesarias y simplificar cuanto sea posible

a) \(\frac{x^2 - 4}{x^2 - 2x}\)
b) \(\frac{x^2 - 5x - 6}{x^2 - 2x - 3}\)

c) \(\frac{x^2 - 9x + 20}{x^2 + x - 20}\)

d) \(\frac{2x - 3}{x - 2} \frac{2 - x}{2x + 3}\)
e) \(\frac{x^2 - y^2}{x + y} \frac{x^2 + 2xy + y^2}{y - x}\)

f) \(\frac{x^2}{6} ÷ \frac{x}{3}\)
4.- Simplificar de modo tal que en la respuesta no aparezcan radicales en el denominador
a) \(\frac{1}{2 + \sqrt{3}} \)

5.- Determine el cociente y el resto (usando el algoritmo de la división de polinomios)
a) \(\frac{x^3 + 2x^2 + 2x + 1}{x + 2} \)

b) \(\frac{x^3 + 6x + 3}{x^2 - 2x + 2} \)

c) \(\frac{6x^3 + 22x + 2x^2}{5 + 2x^2} \)

6.- Aplicar Ruffini y el teorema del resto para evaluar a los siguientes P (a)
a) \(P(x) = 4x^2 + 12x + 5 \) \(\text{en} \ a = -1 \)

b) \(P(x) = 2x^2 + 9x + 1 \) \(\text{en} \ a = 1/2 \)

c) \(P(x) = -7x + x^3 + 6 + 3x^2 \) \(\text{en} \ a = 2 \)

d) \(P(x) = 5x^4 + 30x^3 - 40x^2 + 36x + 14 \) \(\text{en} \ a = -7 \)

7.- Listar todos los ceros racionales posibles (sin evaluar dichos valores para verificar si son raíces)
a) \(P(x) = x^3 - 2x^2 - 5x + 3 \)

b) \(Q(x) = -4x^4 + 20 + x^3 + 6x \)

c) \(R(x) = -3x^3 + 2x^4 - x + 6 \)

8.- Determinar todas las raíces racionales
a) \(A(x) = x^3 - 3x^2 - 4x + 12 \)

b) \(B(x) = x^3 - 4x^2 + x + 6 \)

c) \(C(x) = x^3 - 7x^2 + 14x - 8 \)

9.- Demostrar que \(T(x) = x^3 - x - 2 \) no tiene ningún cero racional

10.- Determinar en cada ítem dos polinomios del grado especificado que tenga los ceros dados
a) grado 3 y ceros \{-1; 1; 3\} \(\text{b) grado 4 y ceros} \{-2; 0; 2; 4\} \)

11.- Encontrar en cada caso el valor del número “m” para que el polinomio \(P(x) \) sea divisible por \(Q(x) \), siendo:
a) \(P(x) = x^2 - 9x + m + x^3 \) \(\text{y} \ \ Q(x) = x + 1 \)

b) \(P(x) = mx^4 - (m+1)x^2 - x + 1 \) \(\text{y} \ \ Q(x) = x + 1 \)
12.- Dados \(P(x) = -3x^4 + 6x^3 - 3a^2x + 3 \) y \(Q(x) = x + 1 \), hallar el valor de “\(a \)” (real) para que el resto de dividir \(P(x) \) por \(Q(x) \) sea 16

13.- Determinar si existen los números reales “\(a \)” y “\(b \)” para que el grado del polinomio suma \(P(x) + Q(x) \) sea 2, siendo:

a) \(P(x) = 3x^3 + 8x^2 + \frac{1}{2} \) y \(Q(x) = (b+1)x^4 + (a-2)x^3 - 2x^2 + 1 \)

b) \(P(x) = (a+1)x^3 + 2x^2 - 3x + 1 \) y \(Q(x) = 2x^3 + (a+b)x^2 + (b+2)x + 4 \)

14.- Encontrar un polinomio que verifique: \(3x^4 - 5x^3 + 3P(x) = 9x^4 - 5x^3 + 2x^2 - 3 \)

RESPUESTAS

1.- a) \(6r^2 - 2s^2 + 6 \) b) \(2\sqrt{x} + \sqrt{2y} + \sqrt{3z} \) c) \(6x^2 - 9xy - 2z + \sqrt{2} - 4 \)

d) \(\sqrt{2y} + \sqrt{3z} \) e) \(x^2 + 9y^2 + xy \) f) \(4s^2 - 1 \)

g) \(2x^4 + 2x^3 - 5x^2 - 2x + 3 \) h) \(x^2 - 10x + 25 \) i) \(x^3 + 15x^2 + 75x + 125 \)

j) \(8x^3 - 36x^2 + 54x - 27 \) k) \(3x^3 + 2x^2 - \frac{1}{2}x^2 \) l) \(x + \frac{1}{x + 3} \)

m) \(3x^2 - 8x + 17 + \frac{-37}{x + 2} \) n) \(t + 8 + \frac{64}{t - 8} \)

2.- a) \(\frac{4bc}{(2a^3 - 3ab^2 + 3b^3)} \) (d) \(\frac{x + 5}{(x - 5)} \) (e) \((x + 3)^2 \) (f) \(2(x + 4)(x + 2) \)

(d) \((x + 4)(x + 2) \) e) \((x + 3)^2 \) f) \(2(x + 4)(x + 2) \)

(g) \(3(x - 1)(x + 1) \) h) \(2s(3s + 4)(2s - 1) \) i) \(x^2y(1 - 2xy)(1 + 2xy) \)

(j) \(2x(x + 3)(x - 2) \) k) \((x - 2)^2(x + 2) \) l) \((3x - y)(3x + y)(9x^2 + y^2) \)

(m) \((x + 2)(x^2 - 2x + 4) \) n) \((x + 1)(x - 1)(x^2 + x^2 + 1) \) n) \(2(x + 3)^2(x + 1)(x - 1) \)

(o) \(p(1 + r)^2 \) p) \((x^2 + 4)(x + 2)(x - 2) \) q) \((x^2 + 2)(x + 1)(x - 1) \)

r) \(x(x + 1)^2(x - 1)^2 \) s) \(x(x - 2)(2x + 1) \)

3.- a) \(\frac{x + 2}{x} \) b) \(\frac{x - 6}{x - 3} \) c) \(\frac{x - 5}{x + 5} \) d) \(\frac{3 - 2x}{2x + 3} \) e) \(-(x + y)^2 \) f) \(\frac{x}{2} \)

(g) \(\frac{1}{2n} \) h) \(\frac{2}{3} \) i) \(-27x^2 \) j) \(1 \) k) \(\frac{2x}{x - 1} \) l) \(x + 2 \)

(m) \(\frac{1}{1 - p} \) n) \(\frac{4x}{x^2 - 1} \) n) \(\frac{1}{x - 3} \) o) \(\frac{x}{1 - xy} \) p) \(\frac{x + 1}{3} \) q) \(\frac{(x + 1)^2}{x^2} \)

4.- a) \(2 - \sqrt{3} \) b) \(-\sqrt{6} - 2\sqrt{3} \) c) \(-4 - 2\sqrt{6} \) d) \(\frac{x - \sqrt{5}}{x^2 - 5} \) e) \(5\sqrt{3} - 4\sqrt{2} - 13 \) f) \(2(2 - \sqrt{x}) \)

5.- a) \(x^2 + 3, -3 \) b) \(x + 2, 8x - 1 \) c) \(3x + 1, 7x - 5 \)

6.- a) \(-3 \) b) \(6 \) c) \(12 \) d) \(-483 \)

7.- a) \(\pm 1, \pm 3 \) b) \(\pm (6; 3; 2; 1; 1/4; 1/2; 3/4; 3/2) \) c) \(\pm (1; 2; 3; 6; 1/2; 3/2) \)

8.- a) \(-2; -2; 3 \) b) \(-1; -2; 3 \) c) \(1; 2; 4 \)

9.- Listar las posibles raíces y luego aplicar el Teorema del Resto o Ruffini

10.- a) \(P(x) = kx^3 - 3kx^2 - kx + 3 \) b) \(P(x) = kx^4 - 4kx^3 - 4kx^2 + 16kx \) y “k” es un número real

11.- a) \(m = -9 \) b) no tiene solución. Porque nunca da resto cero y es independiente del valor de “\(m \)”

12.- a) \(\pm \frac{\sqrt{30}}{3} \)

13.- a) \(b = -1 \) y \(a = -1 \) b) \(b \neq 1 \) y \(a = -3 \)

14.- \(P(x) = 2x^4 + \frac{2}{3}x^2 - 1 \)